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1. Introduction and notation

The light-by-light scattering is a prediction of quantum electrodynamic despite the fact

that it has never been observed so far. The four-photon amplitudes, in QED, have been

computed in the fifties at one loop for massive fermion [1] and recently at two loops for

massless fermions in QED [2] and in N = 1 supersymmetric QED [3]. The first result for

the six-photon amplitudes, at one loop in QED and for massless fermions, was obtained for

the MHV (Maximal Helicity Violating) amplitude by Mahlon [4]. The complete helicity

amplitudes, in QED, has been computed numerically by direct integration of the Feynman

diagrams [5], and also, by using reduction at the integrand level [6]. In the same time, it

has also been computed analytically using unitary cut methods and cross checked with a

reduction method [7]. A compact formula has been given, proving the power of the unitary

cut methods. The unitarity-cut methods were developed first in [8] and then in [9]. They

were used to simplify the computation of the processes e+e− → 4partons in [10]. They are

currently under intense developments [11 – 15].

Although the six-photon amplitudes are out of reach for nowadays experiments, they

provide a good laboratory reaction to settle efficient methods to compute one loop multi-leg

amplitudes. Indeed, multi-particle processes involving Quantum ChromoDynamics (QCD)

will play an important role in the physics probed by the hadronic colliders at the TeV scale.

In particular at the future Large Hadron Collider (LHC), the production of four, and even

five or six jets will not be marginal. Besides providing a refined probe of the dynamics

of colour, such QCD processes constitute a background to the search for new particles.

Indeed, the search for many of these new particles at hadronic colliders often relies on

signatures based on cascade decays. The latter end up with final states involving a large jet

multiplicity. Furthermore, the lowest order estimates for such processes are plagued by the

well-known deficiencies of large renormalization and factorization scale dependencies, poor

multi-jet modelling and large sensitivity to kinematic cuts. Therefore the calculation of

next-to-leading-order (NLO) corrections to such cross sections is a necessary step forward.

In this article, for scalar QED (respectively QED, N = 1 supersymmetric QED) a

generic N -photon helicity amplitude is denoted by: Ascalar
N (respectively Afermion

N , AN=1
N ).

We will use unitarity-cut methods to compute the six-photon amplitudes in scalar QED.

From these results, we can derive results for QED and N = 1 supersymmetric QED. To

achieve this, we use a relation which relates the three theories. To find it, we proceed as fol-

lows. Starting with the N -photon QED amplitudes and using the fact that degrees of free-

dom for internal lines can be added and subtracted [16], we can write the following relation:

Afermion
N = −2Ascalar

N + AN=1
N (1.1)

To calculate those amplitudes, we use the spinor helicity formalism developed in [17]. For
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the spinorial product, we introduce the following notation:

〈pa − |pb+〉 = 〈ab〉 (1.2)

〈pa + |pb−〉 = [ab] (1.3)

〈pa − |6pb|pc−〉 = 〈abc〉 = [cba] = 〈pc + |6pb|pa+〉 (1.4)

〈pa + |6pb 6pc|pd−〉 = [abcd] = −[dcba] = −〈pd + |6pc 6pb|pa−〉 (1.5)

Moreover we use pi...j = pi + · · · + pj and si...j = (pi + · · · + pj)
2 = p2

i...j . The outline

of the paper is as follows. In section 2, we analyse the structure of the amplitudes, and

compute the different tree amplitudes necessary for our calculation. In section 3, we give

an analytical result for the six-photon amplitudes in scalar QED and in section 4, we de-

rive analytical results for QED and N = 1 supersymmetric QED. In section 5, we plot the

different amplitudes for some kinematics and discuss potential problems.

2. Structure of the amplitudes

2.1 Decomposition of the amplitudes Afermion
6 , Ascalar

6 and AN=1
6

The standard reduction methods, for example [18 – 20] show that any amplitude can be

written as a combination of master integrals. This set of master integrals is not unique.

From now, we consider theory with massless particles. In the case of the six-photon

amplitudes, we use the following decomposition:

A6 =
∑

i∈σ(1,2,3,4,5,6)

(ai F4 + bi F3 + di F2A + ci F2B + ei F1 + fi F0

+gi I
n
3

3mass + hi In
3

2mass + ii I
n
3

1mass + ji I
n
2 + rational terms

)

(2.1)

where F4 (respectively F3, F1 and F0) is the so called ”finite part” of the four point function,

in n dimensions, with 4 external masses (respectively three external masses, one external

mass and zero external mass), F2A (respectively F2B) the so called ”finite” part of the n

dimensional four point function with two adjacent external masses (respectively with two

opposite external masses). Only this set of functions {F2A, F2B, F1} will be used, their exact

definition can be found, for example in [21], and to be self consistent we recall them in the

appendix A. In addition, In
3

3mass (respectively In
3

2mass, In
3

1mass) is the n dimensional three

point function with three external masses (respectively two external masses, one external

mass) and In
2 is the n dimensional two point function. The IR divergences are carried

by the function In
3

2m and In
3

1m and the UV one by the function In
2 . Using unitary-cut

methods, we only have to compute the coefficients ai . . . ji and rational terms. Most of

them are related by Bose symmetry or parity.

2.2 Tree amplitudes

In the framework of unitary-cut methods, we need to compute first tree amplitudes. In this

subsection, we will present only the tree amplitudes in QED and scalar QED useful for our

six-photon amplitude computation. The needed tree amplitudes, are the amplitudes cor-

responding to the reactions: two scalars (fermions) into N -photons with the same helicity
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Figure 1: Tree amplitudes needed for the six-photon amplitudes. The particles associated with a

plain line are scalars or fermions.

and two scalars (fermions) into N -photons with the same helicity but one. We assume that

all the photons are ingoing, and pa and pb are the four momentum of the scalars (fermions):

Ascalar
tree (1+, . . . , N+) = 0 (2.2)

Afermion
tree (1+, . . . , N+) = 0 (2.3)

Ascalar
tree (1+, . . . , N+, k−) = i

(

e
√

2
)N+1 ∑

σ({1...N}\k)

1

〈12〉〈23〉 . . . 〈N−1N〉
〈ka1〉
〈1a1〉

〈kbN〉
〈NbN〉

= i
(

e
√

2
)N+1 〈ka〉〈kb〉

∏N
j=1,j 6=k〈ja〉〈jb〉

〈ab〉N−1

= ie
√

2
〈ka〉〈kb〉
〈ab〉

N
∏

i=1,i6=k

Si (2.4)

Afermion
tree (1+, . . . , N+, k−) = Ascalar

tree (1+, . . . , N+, k−)

(〈ka〉
〈kb〉 +

〈kb〉
〈ka〉

)

(2.5)

where Si = −e
√

2 〈ab〉
〈ai〉〈ib〉 is the eikonal factor. Note that in equation (2.5), a sum over the

helicities of the fermions has been performed.

2.3 Additional reductions

Now using the properties of the QED theories, we can simplify furthermore the decompo-

sition (2.1)of the six-photon amplitudes. Those comments and rules is available only for

these amplitudes.

Remark 1. Only the functions In
3

2m, In
3

1m are IR divergent. Since each diagram is not

IR divergent, the coefficients hi and ii are zero.

Each Feynman diagram of the six-photon amplitudes is free of IR divergences thanks

to the numerator of the fermionic propagator in QED or the structure of the vertex in

scalar QED. If the reduction is done by pinching propagators, we get sub-diagrams which

are not IR divergent. After the reduction, we obtain three point sub-diagrams and the

”finite” part of four point scalar integrals. Since the three point sub-diagrams are free of

IR divergences, they cannot be expressed in term of one mass/two mass three point scalar

integrals In
3

2m, In
3

1m and so the coefficients hi and ii are zero [20].
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Remark 2. Using standard reduction (for example [20]), we can show for QED and scalar

QED, that the coefficients in front of two point functions are zero and also that the rational

terms are zero.

The first statement is in accordance with the fact that each diagram of the six-photon

amplitudes is free of UV divergences. From that, it is not obvious that the different coeffi-

cients are zero, we have proven it by explicit calculation. As a consequence of remarks (1)

and (2), there are no logarithmic terms in the six-photon amplitudes. The second state-

ment, shown in ref. [22], is also far from being obvious. Indeed, according to power counting

arguments [23], the rational terms can be present. In fact, they are present for individual

Feynman diagram but these rational terms sum up to zero when adding all the diagrams.

Now, from what has been said previously, we can reduce the decomposition of the

amplitude (2.1): for the six-photon case, the coefficients hi, ii, and ji are zero and the

rational term is also nul. In addition, since we have only six photons on shell, the coefficients

ai, bi and fi are also zero. So each amplitude Afermion
6 , Ascalar

6 can be written as:

A6 =
∑

i∈σ(1,2,3,4,5,6)

di F2A + ci F2B + ei F1 + gi I
n
3

3mass (2.6)

From the helicity structure of trees, we can derive some rules which will reduce furthermore

the decomposition (2.6).

Rule 1. Consider a master integral with mass. If the mass is formed only with photons

with the same helicity, therefore the coefficient in front of the master integral is zero.

Proof: Using the cut techniques, we get that the coefficient in front of this integral is pro-

portional to the tree amplitude which, once pinched, yields the mass. Formulae (2.2), (2.3)

show that the on-shell tree amplitudes with photons having the same helicity are zero. So

the coefficient of a master integral with a mass formed by photons with the same helicity

is zero.

Rule 2. For the box with one mass and with two adjacent masses, the helicity of two

adjacent massless legs must be alternate. In the case of the box with two opposite masses,

the helicities of the two opposite massless legs must be the same. If it is not the case, the

coefficient in front of the master integral is zero.

Proof: In the case of the one mass box and the two adjacent mass box, if the helicities

of two adjacent massless legs are the same, the coefficient, in front of the box, will be

proportional to trees, eqs. (2.2), (2.3), which are zero. The case of the two opposite mass

box is more complicated and a proof is given in the appendix B.

Now we can further reduce the decomposition of all helicity amplitudes thanks to these

last rules. We begin with the most simple amplitudes: AN (1±, 2+ . . . , N+). With at most

one negative photon, we can have only one mass according to the rule (1), so ci, di, gi = 0.

But in this case, the helicities cannot be alternate so, from the rule (2), we deduce that
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each ei = 0. Therefore, we get for these amplitudes:

∀N > 4, Ascalar
N (1±, 2+ . . . , N+) = 0 (2.7)

∀N > 4, Afermion
N (1±, 2+ . . . , N+) = 0 (2.8)

∀N > 4, AN=1
N (1±, 2+ . . . , N+) = 0 (2.9)

These results were already found by Mahlon [4] many years ago.

Then we study the MHV amplitude A6(1
−, 2−, 3+, 4+, 5+, 6+). We have only two

negative photons so we can only have at most two masses: gi = 0. The helicities must be

alternate according to rule (2) therefore for the MHV amplitude, di = 0. So we have:

A6(−− + + ++) = i

(

e
√

2
)6

16π2

∑

σ(1,2)

∑

σ(3,4,5,6)

ci

2
F2B(s215, s415, s15, s26) +

ei

2
F1(s23, s24, s156)

(2.10)

Some permutations leave master integrals invariants, that is why we divide the coefficient

by the adequate number.

It is rather easy to show that, in the case of the MHV six-photon amplitude, the two

coefficients di and ei are related. Indeed, we can take the limit such that the photon with

helicity ”+” forming one of the mass of the two opposite mass box is soft. In this limit,

we have the following relation: limm2→0 F2B = F1. Since the MHV amplitude is composed

by two MHV trees already expressed in term of eikonal factors eq. (2.4) and since the five

photon amplitudes are zero, we can deduce that ci = −ei. Finally, we have the following

decomposition for the MHV amplitude:

A6(−− + + ++) = i

(

e
√

2
)6

16π2

∑

σ(1,2)

∑

σ(3,4,5,6)

ci

2
(F2B(s315, s415, s15, s26) − F1(s23, s24, s156))

(2.11)

We have to compute only one coefficient.

Lastly, we examine the form of the decomposition of the Next to MHV amplitude

(NMHV) A6(1
−, 2−, 3−, 4+, 5+, 6+). Here we can have three mass three point functions.

But the rule (2) imposes ci = 0. So we have only three coefficients to calculate and the

amplitude can be written as:

A6(−−− + ++)= i

(

e
√

2
)6

16π2

∑

σ(1,2,3)

∑

σ(4,5,6)

2 diF2A(s14, s452, s25, s36)+
ei

2
F1(s63, s61, s425)

+
ei

∗

2
F1(s25, s24, s136) +

gi

6
In
3

3m(s14, s25, s36)

(2.12)

Here again, we divide the coefficients by the adequate number to take into account permu-

tations leaving invariant the corresponding master integrals. There are two kinds of one

mass box integrals. The first kind has two photons with a positive helicity and one with a
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negative helicity forming the mass, whereas the second kind has one photon with a positive

helicity and two photons with a negative helicity forming the mass. As we have three pho-

tons with a negative helicity and three with a positive helicity, the two kinds of one mass

box integrals are directly related by parity. That is why the coefficient in front of them are

complex conjugate. In the next section, we will give the results for the various cases.

3. A
scalar

6
amplitudes

3.1 Ascalar
N (1−, 2−, 3+ . . . , N+), N > 4 helicity amplitudes

In this section, we calculate the MHV amplitude Ascalar
N (1−, 2−, 3+ . . . , N+) for N photons

with N > 4. The generalization to N photons is rather easy, but note that we have

to consider N > 4 otherwise there are some UV problems. Using the quadruple cut

techniques [9], by direct computation, we obtain:

Ascalar
N (−− + · · ·+) = i

(

e
√

2
)N

16π2

∑

σ(1,2)

∑

σ(3...N)

dscalar
i

(N − 4)!
F1(s23, s24, s15...N )

+ i

(

e
√

2
)N

16π2

∑

σ(1,2)

∑

σ(3...N)

N−1
∑

M=5

(−1)M−6dscalar
i

(N−M)!(M−4)!
F2B(s135...M , s145...M , s15...M , s2M+1...N ),

(3.1)

where

dscalar
i = − 〈34〉N−6

∏N
j=5〈3j〉〈4j〉

〈13〉〈41〉〈23〉〈42〉
s34

[34]

〈34〉 (3.2)

The factorial coefficient (N − M)!(M − 4)! and (N − 4)! are the number of permutations

which leaves invariant the mass of the master integral. The formula obtained is explicitly

invariant by exchange of the two photons with a negative helicity. In the case where N = 6,

the amplitude reduces to:

Ascalar
6 (−− + + ++) = −i

(

e
√

2
)6

16π2

∑

σ(1,2)

∑

σ(3...6)

〈13〉〈41〉〈23〉〈42〉
〈35〉〈45〉〈36〉〈46〉

(

[34]

〈34〉
F1(s23, s24, s156)

s34

−F2B(s135, s145, s15, s26)

s34

)

(3.3)

It remains only one Gram determinant (s34) in the denominator but F1, F2B ≃ s34 when

s34 → 0. Therefore the potential numerical problem when the Gram determinant vanishes

is under control.

3.2 Ascalar
6 (1−, 2−, 3−, 4+, 5+, 6+) helicity amplitude

We use the quadruple-cut techniques to calculate the box coefficients [9], and the triple-cut

– 7 –
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technique to calculate the triangle coefficients [24]. We obtain for the amplitude:

Ascalar
6 (−−− + ++) = i

(

e
√

2
)6

16π2

∑

σ(1,2,3)

∑

σ(4,5,6)

2 dscalar
i F2A(s14, s452, s25, s36)

+
escalar
i

2
F1(s63, s61, s425)

+
escalar
i

2

∗

F1(s25, s24, s136)

+
gscalar
i

6
In
3

3m(s14, s25, s36) (3.4)

where

dscalar
i = − s425〈24〉[16]

〈45〉[31][1p4254]2
[1p4252][6p4254]

[1p4255][3p4254]
(3.5)

escalar
i = − 〈2p4251〉〈2p4253〉[36][16]s425

〈4p4251〉〈5p4253〉〈5p4251〉〈4p4253〉
〈31〉

[31]s31
(3.6)

escalar
i

∗
= − [6p6135][6p6134]〈42〉〈52〉s613

[1p6134][1p6135][3p6134][3p6135]

[45]

〈45〉s54
(3.7)

gscalar
i =

[4p251]

[1p254]

[5p142]

[2p145]

[6p253]

[3p256]

∑

γ±

[1Kb
21]

[4Kb
24]

[2Kb
22]

[5Kb
25]

[3Kb
23]

[6Kb
26]

(3.8)

Kb
2
µ

= γ± (−p25)
µ − s25 (p14)

µ (3.9)

γ± = −p25.p14 ±
√

∆ (3.10)

∆ = (p25.p14)
2 − p2

14p
2
25 (3.11)

The result is very compact. By expanding the coefficient gscalar
i , we find that all square

roots, coming from γ±, disappear as it should be. All the coefficients are rational functions

of spinor products of external momenta. There is also a Gram determinant in the denomi-

nator of the coefficients dscalar
i and gscalar

i . These two Gram determinants go to zero in the

same phase space region. For this region, in the numerator, it is a combination of F2A and

In
3

3m which cancels in such way that there is no singularity (for more details see [20]). We

do not give here the explicit formulae because they break the simplicity of the expressions

but we implement them in our numerical code. It is particulary important to do this for

the scanning of the Landau singularities.

In the next section, we present the result for the amplitudes with a fermion loop and

a sfermion loop.

4. A
fermion

6
and A

N=1

6
amplitudes

4.1 Afermion
N (1−, 2−, 3+ . . . , N+) and AN=1

N (1−, 2−, 3+ . . . , N+) helicity amplitudes

To calculate the MHV amplitudes: Afermion
N (1−, 2−, 3+ . . . , N+) and

AN=1
N (1−, 2−, 3+ . . . , N+), we use extensively the formula ( 2.5) at the integrand

level. The idea is the following. The introduction of ( 2.5) under the integral, in the cut

– 8 –
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p+
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p+
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qa
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p−1

p+
6

chain 2

Figure 2: Spinor QED loop.

fermion amplitude Afermion
N cut, allows to write the cut fermion amplitude as the cut scalar

amplitude Ascalar
N cut plus some terms. Using the supersymmetric decomposition (1.1) the

remaining part is identified with the cut supersymmetric amplitude AN=1
N cut. So, we do

not have to calculate all the supersymmetric diagrams.

We show how it works on an example. We consider a fermion loop with two cuts on

propagators qa and qb. The figure 2 shows how the helicities are shared: two trees with one

photon with a negative helicity. We compute the cut amplitude Afermion
N cut corresponding

to figure 2:

Afermion
N cut = −

∫

dnq δ
(

q2
a

)

δ
(

q2
b

)

〈b (Π+ + Π−) (chain1)a〉〈a (Π+ + Π−) (chain2)b〉

= −
∫

dnq δ
(

q2
a

)

δ
(

q2
b

)

(〈1b〉〈2a〉
〈1a〉〈2b〉 +

〈1a〉〈2b〉
〈1b〉〈2a〉

)

Ascalar
1 treeA

scalar
2 tree

= −2

∫

dnq δ
(

q2
a

)

δ
(

q2
b

)

Ascalar
1 treeA

scalar
2 tree

− 〈12〉2
∫

dnq δ
(

q2
a

)

δ
(

q2
b

) s2
abA

scalar
1 treeA

scalar
2 tree

〈1ab1〉〈2ab2〉 (4.1)

where Π± = 1±γ5

2 are the chiral projectors. We recognize the cut scalar amplitude Ascalar
N cut

in the first term of the right hand side of equation (4.1). Since the cut amplitude Afermion
N cut

also obeys to the supersymmetric decomposition (1.1), that means that the second term of

the left hand side of eq. (4.1) is identified as the cut supersymmetric amplitude. Using this

trick, we can easily calculate the supersymmetric amplitude and obtain straightforwardly

the spinor amplitude. For these two amplitudes, we get:

A
fermion/N=1
N (−− + · · ·+) = i

(

e
√

2
)N

16π2

∑

σ(1,2)

∑

σ(3...N)

d
fermion/N=1
i

(N − 4)!
F1(s23, s24, s15...N )

+ i

(

e
√

2
)N

16π2

∑

σ(1,2)

∑

σ(3...N)

N−1
∑

M=5

(−1)M−6d
fermion/N=1
i

(N−M)!(M−4)!
F2B(s135...M , s145...M , s5...M , sM+1...N),

(4.2)

where dfermion
i = 2 〈34〉N−6

QN
j=5

〈3j〉〈4j〉

〈13〉2〈42〉2

s34

[34]
〈34〉 , and dN=1

i = − 〈34〉N−6

QN
j=5

〈3j〉〈4j〉
〈12〉2. In the case of
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p+
5

p−2

p+
4

p+
6

p−3

chain 1

qa

qb

chain 2

p−1

Figure 3: Spinor QED loop.

six photons, we get:

Afermion
6 (−− + + ++) = i

(

e
√

2
)6

16π2

∑

σ(1,2)

∑

σ(3...6)

2〈13〉2〈42〉2
〈35〉〈45〉〈36〉〈46〉

[34]

〈34〉

(

F1(s23, s24, s156)

s34

−F2B(s135, s145, s15, s26)

s34

)

(4.3)

AN=1
6 (−− + + ++) = i

(

e
√

2
)6

16π2

∑

σ(1,2)

∑

σ(3...6)

−〈12〉2
〈35〉〈45〉〈36〉〈46〉 (F1(s23, s24, s156) (4.4)

−F2B(s135, s145, s15, s26))

Full agreement is found with [4, 7] for the fermion amplitude Afermion
6 (− − + + ++). We

can do the same comments as in scalar QED. We point out that the Gram determinants

s34 have disappeared in the supersymmetric amplitude AN=1
6 (−− + + ++).

4.2 Afermion
6 (1−, 2−, 3−, 4+, 5+, 6+) and AN=1

6 (1−, 2−, 3−, 4+, 5+, 6+) helicity ampli-

tudes

To calculate those two amplitudes, we use again quadruple cut techniques [9] and triple

cut techniques [24]. As in the preceding subsection, we use the supersymmetric decompo-

sition (1.1) to extract the supersymmetric amplitude and then obtain the fermion one.

As in the previous subsection, we treat an example to illustrate how it works. It

is a bit different here because the trees do not have the same helicity structure. We

consider a fermion loop with two propagators cut as shown on figure 3. If we compute the

corresponding cut amplitude, we get:

Afermion
N cut = −

∫

dnq δ
(

q2
a

)

δ
(

q2
b

)

〈b (Π+ + Π−) (chain1)a〉〈a (Π+ + Π−) (chain2)b〉

= −2

∫

dnq δ
(

q2
a

)

δ
(

q2
b

)

Ascalar
1 treeA

scalar
2 tree

− 〈1P2636〉2
∫

dnq δ
(

q2
a

)

δ
(

q2
b

) Ascalar
1 treeA

scalar
2 tree

〈1a6〉〈1b6〉 (4.5)

Again, thanks to the supersymmetric decomposition (1.1), we can identify the supersym-

metric cut amplitude and obtain the fermion cut amplitude. Doing all the calculation, we
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get for these two amplitudes:

A
fermion/N=1
6 (−−− + ++)=i

(

e
√

2
)6

16π2

∑

σ(1,2,3)

∑

σ(4,5,6)

(

2 d
fermion/N=1
i F2A(s14, s452, s25, s36)

+
e
fermion/N=1
i

2
F1(s63, s61, s425) +

e
fermion/N=1
i

2

∗

F1(s25, s24, s136)

+
g

fermion/N=1
i

6
In
3

3m(s14, s25, s36)

)

(4.6)

where:

dfermion
i = − 1

[31]〈45〉[1p4254]2
[1p4252]2[6p4254]2 + s2

425〈24〉2[16]2

[1p4255][3p4254]
(4.7)

efermion
i = 2

〈2p4253〉2[16]2s425

〈4p4251〉〈5p4253〉〈5p4251〉〈4p4253〉
〈31〉

[31]s31
(4.8)

efermion
i

∗
= 2

[6p6135]2〈42〉2s613

[1p6134][1p6135][3p6134][3p6135]

[54]

〈54〉s54
(4.9)

gfermion
i = −2gscalar

i (4.10)

Again, we get a full agreement with [7] for the amplitude Afermion
6 (− − − + ++). We

can observe a factor ”2”, except for the coefficient of the two adjacent box between the

coefficients of the two amplitudes Afermion
6 (− − − + ++) and Ascalar

6 (− − − + ++). This

factor ”2” comes from the fact that for a fermion loop, there are two currents. These two

currents give rise to a factor ”2” except in the case of the two adjacent mass box, where

they give rise to a sum two terms (eq. (4.7)).

dN=1
i = − 1

[31]〈45〉
[6p4252]2

[1p4255][3p4254]
(4.11)

eN=1
i = 2dN=1

i (4.12)

eN=1
i

∗
= eN=1

i (4.13)

gN=1
i = 0 (4.14)

In the N = 1 supersymmetric QED, the coefficients are simpler. Since there are only six

photons, the two kinds of one mass four point boxes are related by parity. This leads to

the equality between the coefficients eN=1
i

∗
= eN=1

i . With eight photons or more, this

becomes wrong. We can also point out that all Gram determinants disappear.

4.3 Absence of triangles in AN=1
6

In the N = 1 supersymmetric amplitude AN=1
6 , the fact that there are no triangles is prob-

ably just an accident. But we can make the following statement: for one loop, in QEDN=1

theory, the N photons NMHV helicity amplitudes will have no triangle function. In fact,

as we have only three photons with a negative helicity, each mass of the triangle is formed
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with one photon with a negative helicity. The relation (2.5) shows the linearity between

the MHV tree amplitude in QED and in scalar QED. So we obtain directly using [24] that:

gN=1 = gfermions + 2gscalar (4.15)

But now if we have at least four photons with a negative helicity, one mass of the triangle

will be formed by two photons with a negative helicity and the tree amplitude corresponding

to this mass will not be a MHV tree. The problem comes from the fact that the relation

linking NMHV tree amplitude in QED and scalar QED is not linear but affine. This affine

coefficient is the contribution of the triangle to the supersymmetric N = 1 amplitude and

there is no reason that the coefficients in front of the triangles become zero. So we can

conjecture that at one loop, in QEDN=1 theory, the N > 6 photons Next to Next to MHV

(NNMHV) helicity amplitudes will have triangles.

5. Numerical results

In this section, we present numerical results for the different six-photon amplitudes. We

have built a fortran code using the GOLEM library for the different four point and

three point functions. To be consistent with previous results, we use the kinematics

defined by Nagy and Soper in ref. [5]. First of all, we recall this kinematics: the re-

action γλ1(k1) + γλ2(k2) → γλ3(k3) + γλ4(k4) + γλ5(k5) + γλ6(k6) is considered, where

ki is the four-momentum of the photon i and λi its helicity, the four-momenta fulfill

k1 + k2 = k3 + k4 + k5 + k6. In the center of mass frame ~k1 + ~k2 = ~0, ~k1 is along the

-z-axis, an arbitrary phase space point is chosen:























−→
k3 = (33.5, 15.9, 25.0)
−→
k4 = (−12, 5, 15.3, 0.3)
−→
k5 = (−10.0,−18.0,−3.3)
−→
k6 = (−11.0,−13.2,−22.0)

(5.1)

Then new final momentum configurations is generated by rotating the final state through

angle θ about the y-axis. For all the plots of this section, we take α = e2/4π = 1. The

helicities ”+” and ”-” refer always to ingoing photons.

5.1 The MHV amplitudes.

In the figure 4, we plot the module of the MHV amplitude for QED, scalar QED and

N = 1 supersymmetric QED (respectively the formula (4.3) , (3.3) and (4.4) ) against

the variable θ. Note that these formula have been derived assuming that all the pho-

tons are ingoing. In order to match previous results of the references [5, 7], we compute

A
fermion/scalar/N=1
6 (k1, k2,−k3,−k4,−k5,−k6) with the helicities λ1 = −, λ2 = −, λ3 = +,

λ4 = +, λ5 = +, λ6 = +.

All these MHV amplitudes are π periodic.
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θ
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3 α
s 
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| /

0

5000

10000

15000

20000

25000

30000

35000

40000

45000
fermionA
scalarA
N=1A

fermionA
scalarA
N=1A

fermionA
scalarA
N=1A

Figure 4: The MHV six-photon amplitudes with the Nagy and Soper [5] configuration for the

three theories. Note that the curve for Ascalar amplitude has a minimum which is not zero.

θ
0 1 2 3 4 5 6

3 α
s 

|A
| /

0

5000

10000

15000

20000

25000

30000 fermionA
scalarA
N=1A

fermionA
scalarA
N=1A

fermionA
scalarA
N=1A

Figure 5: NMHV six-photon amplitudes with the Nagy and Soper [5] configuration for the three

QED.

5.2 The NMHV amplitudes

In figure 5, with the same configuration than in the last section, we plot the

NMHV six-photon amplitudes for the three theories against θ. We compute

A
fermion/scalar/N=1
6 (k2,−k3,−k6, k1,−k4,−k5) with the helicities λ1 = +, λ2 = −, λ3 = −,

λ4 = +, λ5 = +, λ6 = −.

In this case, the amplitudes are not π periodic. The dips appearing in the curves, are

related to the Landau singularities called the ”double parton scattering” [5].

5.3 Double parton scattering

The Landau equations give the necessary conditions for a Feynman diagram to have a

singularity. In the case of the six-photon amplitudes, since all internal and external particles

are massless, three types of singularities can appear. Two are the well known soft and
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p1

p6 p2

p4

p5p3

q4

q3
q2

q1

Figure 6: Double parton scattering configuration: p1, p4 are ingoing photons and p2, p3, p5, p6 are

outgoing photons.

collinear singularities, the other corresponds to the so called double parton scattering. In

this case, four propagators are one mass shell, these propagators are adjacent by pair.

So here we explain rapidly what is the ”double parton scattering” kinematics.

The two ingoing photons 1 and 4 split into a fermion anti-fermion collinear pairs, each

fermion scatter with an anti-fermion to give a photon pair with no transverse momentum

in the center of mass frame ~p1 + ~p4 = ~0 (c.f. figure 6). In the configuration of ”double

parton scattering”, the two propagators q1 and q2 are collinear to the external leg p1 and

the two other q3 and q4 are collinear to p4:



















q1 = −xp1

q2 = (1 − x)p1

q3 = −yp4

q4 = (1 − y)p4

(5.2)

Solving the Landau equations, we find that the conditions to have a double parton scat-

tering singularity are:










det(S) → 0

s35, s26 > 0

s135, s435 < 0

(5.3)

with

det(S) = s135s435 − s35s26 (5.4)

In the center of mass frame ~p1 + ~p4 = ~0, det(S) = s14 k2
t where k2

t is the square of the

transverse momentum of the photon photon pairs 2,6 and 3,5.

In the figure 7, we plot the NMHV QED amplitudes as a function of θ. On the top

of that, we surimpose k2
t , normalized in such way that the curve is visible. We note that

the dips appear in the region where k2
t is minimum. In this case, the minimum of k2

t is

different from zero because we are not sitting on the singularity.

Choosing an appropriate kinematics containing a Landau singularity, we examined

numerically the behavior of the six-photon amplitudes around this singularity. In all cases,

the numerator goes to zero fast enough to compensate the cancellation of the denominator.

Now we are studying analytically this compensation. More details will be presented in a

forthcoming publication [25].

– 14 –



J
H
E
P
0
1
(
2
0
0
8
)
0
5
9

θ
0 1 2 3 4 5 6

3 α
s 

|A
| /

5000

10000

15000

20000

25000

30000 fermionA
 10× 2

tk

fermionA
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tk

Figure 7: Localisation of a Landau singularity. Note that the red curve describing the k2
t

of the

photon pairs 2,6 and 3,5 does not reach zero.

6. Conclusion

In this paper, we have obtained all six-photon helicity amplitudes in QED, scalar QED

and N = 1 supersymmetric QED. Those amplitudes are linked among themselves by the

relation (1.1). To calculate them, we used the powerful unitarity-cut techniques and we got

very compact expressions. More work is required to understand quantitatively the behavior

of these amplitudes and especially how the numerator regularize the double parton scat-

tering singularity in a kinematics where it shows up, this will be presented elsewhere [25].
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A. Scalar integrals

In this appendix, for sake of completeness, the definition of master integrals used in this

paper is recalled, more details can be found in [21]. We also give det(G) the determinant

of the Gram matrix Gij = 2pi.pj built with the external four momentum and det(S) the

determinant of the kinematical S-matrix defined by Sij = (qj − qi)
2 where the qi are the

four momentum flowing in the propagators.

A.1 Three mass three point function

p1

p4

p2 p5

p3

p6











m2
1 = s14

m2
2 = s25

m2
3 = s36
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In
3

(

m2
1, m

2
2, m

2
3

)

=
1√
∆

{(

2Li2

(

1 − 1

y2

)

+ 2Li2

(

1 − 1

x2

)

+
π2

3

)

+
1

2

(

ln2

(

x1

y1

)

+ ln2

(

x2

y2

)

+ ln2

(

x2

y1

)

− ln2

(

x1

y2

))}

(A.1)

where:

x1,2 =
m2

1 + m2
2 − m2

3 ±
√

∆

2m2
1

(A.2)

y1,2 =
m2

1 − m2
2 + m2

3 ±
√

∆

2m2
1

(A.3)

∆ = m4
1 + m4

2 + m4
3 − 2m2

1m
2
2 − 2m2

1m
2
3 − 2m2

2m
2
3 − i sign(m2

1) ǫ (A.4)

The formula (A.1) is valid in all kinematical regions because of the small imaginary part i ǫ:

√
∆ ± iǫ =

{√
∆ ± iǫ , ∆ ≥ 0

±i
√
−∆ , ∆ ≤ 0

(A.5)

The two determinants are given by the relations:

det(G3m) = m2
1m

2
2 − (m1.m2)

2 = −∆

4
(A.6)

det(S3m) = 2m2
1m

2
2m

2
3 (A.7)

A.2 Four point functions

A.2.1 With zero mass

p3

t

s

p1

p4p2











s = s12

t = s14

u = s13

In
4 (s, t) =

2

st

rΓ

ǫ2
{

(−s)−ǫ + (−t)−ǫ
}

− 2

st
F0(s, t) (A.8)

where:

F0(s, t) =
1

2

{

ln2
(s

t

)

+ π2
}

(A.9)

The determinants are given by:

det(G0) = −2st(s + t) = 2stu (A.10)

det(S0) = (st)2 = 〈24342〉2 (A.11)

– 16 –



J
H
E
P
0
1
(
2
0
0
8
)
0
5
9

A.2.2 With one mass

p2

p3

s

t

p6

p5

p4

p1



















s = s12

t = s23

u = s13

m2 = s456

In
4

(

s, t, m2
)

=
rΓ

stǫ2
{(

(−s)−ǫ + (−t)−ǫ
)

+
(

(−s)−ǫ − (−m2)−ǫ
)

+
(

(−t)−ǫ − (−m2)−ǫ
)}

− 2

st
F1

(

s, t, m2
)

(A.12)

where:

F1

(

s, t, m2
)

= Li2

(

1 − m2

s

)

+ Li2

(

1 − m2

t

)

− Li2

(

−s

t

)

− Li2

(

− t

s

)

(A.13)

= F0(s, t) +

{

Li2

(

1 − m2

s

)

+ Li2

(

1 − m2

t

)

− π2

3

}

(A.14)

The determinants are given by:

det(G1) = −2st
(

s + t − m2
)

= 2stu (A.15)

det(S1) = (st)2 = 〈2m3m2〉2 (A.16)

A.2.3 With two adjacent masses

p1 p4

p3

s

t

p6
p2

p5



















s = s14

t = s425

m2
1 = s25

m2
2 = s36

In
4

(

s, t, m2
1, m

2
2

)

=
rΓ

(st)ǫ2
{

(−s)−ǫ +
(

(−t)−ǫ − (−m2
1)

−ǫ
)

+
(

(−t)−ǫ − (−m2
2)

−ǫ
)}

− 2

st
F2A

(

s, t, m2
1, m

2
2

)

(A.17)

where:

F2A

(

s, t, m2
1, m

2
2

)

= Li2

(

1 − m2
1

t

)

+ Li2

(

1 − m2
2

t

)

+
1

2
ln

(s

t

)

ln

(

m2
2

t

)

+
1

2
ln

(

s

m2
2

)

ln

(

m2
1

t

)

(A.18)

The determinants are given by:

det(G2A) = −2s
(

m2
1m

2
2 − t(m2

1 + m2
2 − s − t)

)

= −2s〈1m14m21〉 (A.19)

det(S2A) = (st)2 (A.20)
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A.2.4 With two opposite masses

p1

p4

p3

s t

p5

p6

p2



























s = s143

t = s243

u = s23

m2
1 = s14

m2
2 = s56

In
4

(

s, t, m2
1, m

2
2

)

=
rΓ

(st − m2
1m

2
2)ǫ

2

{(

(−s)−ǫ − (−m2
1)

−ǫ
)

+
(

(−s)−ǫ − (−m2
2)

−ǫ
)}

+
rΓ

(st − m2
1m

2
2)ǫ

2

{(

(−t)−ǫ − (−m2
1)

−ǫ
)

+
(

(−t)−ǫ − (−m2
2)

−ǫ
)}

− 2

st − m2
1m

2
2

F2B

(

s, t, m2
1, m

2
2

)

(A.21)

where:

F2B

(

s, t, m2
1, m

2
2

)

= − Li2

(

1 − m2
1m

2
2

st

)

+ Li2

(

1 − m2
1

s

)

+ Li2

(

1 − m2
2

s

)

+ Li2

(

1 − m2
1

t

)

+ Li2

(

1 − m2
2

t

)

+
1

2
ln2

(s

t

)

(A.22)

= F1

(

s, t, m2
1

)

+ F1

(

s, t, m2
2

)

− F0(s, t) −
{

Li2

(

1 − m2
1m

2
2

st
− π2

6

)}

(A.23)

The determinants are given by:

det(G2B) = −2
(

m2
1m

2
2 − st

) (

m2
1 + m2

2 − s − t
)

= 2u
(

st − m2
1m

2
2

)

(A.24)

det(S2B) =
(

st − m2
1m

2
2

)2
= 〈2m13m12〉2 = 〈2m23m22〉2 (A.25)

B. Proof of rule (2)

In this appendix, we want to prove that, in the case of the box with two opposite masses,

the helicities of the two opposite massless legs must be the same otherwise the coefficient

in front is zero. To do that, we consider the following box integrals where the helicities of

the two opposite massless legs is different.

p2

p3

q
µ

1

q
µ

2 q
µ

3

q
µ

4

p6

p5

p
−
4

p
+
1 









∀i ∈ [1 . . . 6], p2
i = 0

p23 = p2 + p3

p56 = p5 + p6

We assume that the helicity of the photon p1 is positive and the helicity of the photon p4

is negative. Using the four cuts techniques, the coefficient, called C, in front of this master

integral is given by, in scalar QED:

C ∝
∑

i=a,b

ε+
1 .q1iε

−
2 .q2i (B.1)
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where q1i and q2i are the solution of the four cuts conditions:

δ(q2
1) = 0 (B.2)

δ(q2
2) = 0 (B.3)

δ(q2
3) = 0 (B.4)

δ(q2
4) = 0 (B.5)

So first we solve this system and after we will calculate (B.1).

We choose as a base of the four-dimension Minkowski space: B =

{pµ
1 , pµ

4 , 〈1γµ4〉, 〈4γµ1〉}. In our case, qµ
1 can be taken as a four-dimension vector,

therefore, we can project it on the base B:

qµ
1 = a pµ

1 + b pµ
4 +

c

2
〈1γµ4〉 +

d

2
〈4γµ1〉 (B.6)

So to know the vector qµ
1 , we have to calculate, the four coefficient a, b, c and d. The

conditions (B.2) and (B.5) impose:

(q1 − p1)
2 = 0 ⇔ 2 (p1.q1) = 0 ⇔ b = 0 (B.7)

The conditions (B.3) and (B.4) impose:

(q1 + p23 + p4)
2 = 0 ⇔ 2p4. (q1 + p23) = 0 ⇔ as14 + 2(p23.p4) = 0 ⇔ a = −2(p23.p4)

s14

(B.8)

The first condition (B.2), knowing b = 0, imposes:

q2
1 = 0 ⇔ c d = 0 ⇔ c = 0 or d = 0 (B.9)

If we assume that d = 0, therefore the conditions (B.2) and (B.3) impose that:

(q1 + p23)
2 = 0 ⇔ 2(p23.q1) = −s23 ⇔ c =

〈4p231〉
s14

(B.10)

and finally we obtain qµ
1 = − 〈4P23γµ14〉

2s14
.

Else if we assume c = 0, therefore the conditions (B.2) and (B.3) impose that:

(q1 + p23)
2 = 0 ⇔ 2(p23.q1) = −s23 ⇔ d =

〈1p234〉
s14

(B.11)

and in this case we obtain qµ
1 = − [4P23γµ14]

2s14
. Finally according to the four cuts techniques,

the loop momenta is found to be:
{

qµ
1 a = − 〈4P23γµ14〉

2s14

qµ
1 b = − [4P23γµ14]

2s14

(B.12)

From the formula (B.12), we can compute q2a/b and we obtain:

{

qµ
2 a = qµ

1 a + pµ
23 = 〈4γµP2314〉

2s14

qµ
2 b = qµ

1 b + pµ
23 = [4γµP2314]

2s14

(B.13)
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We are now ready to compute the left hand side of equation (B.1) inserting the

formula (B.12) and (B.13), we obtain directly that:

C ∝ ε+
1 .q1aε

−
2 .q2a + ε+

1 .q1bε
−
2 .q2b = 0 (B.14)

Therefore the hypothesis that the two photons p1 and p4 have two different helicities

implies that the coefficient in front of the two opposite mass integrals is zero.
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